Conflict Resolution for Shared Libraries

1. When opening an existing project, before calling BEoptProject.LoadProjectData or BEoptProject.LoadLibraryData:
a. Synchronize Datasets:
i. When there is a name conflict (same GUID but different name) update the name of the Project version of the dataset to match the Library version of the dataset.
ii. Insert datasets that exist in one database but not the other (as determined by their GUID) into the one where they don’t exist.
b. Synchronize Selection Groups:
i. When there is a name conflict (same GUID but different name) update the name of the Project version of the group to match the Library version of the group.
ii. Insert groups that exist in one database but not the other (as determined by their GUID) into the one where they don’t exist.
iii. For selection groups (only those referenced by one or more cases) that have different selections between the library and project databases:
1. Change GUID and name of the group [by appending a number (as we do for copying options in the option manager)] for the project version.
2. Copy the library version of the group to the project database.
3. Copy the library version of the group’s selections (except those for library only options/measures) to the project database. (This could result in some missing selections, which are handled in 2. below.)
2. When a selection group is selected for a case (and isn’t selected in any other case):
a. Display an hourglass (or possibly message) while we open the cost selector in silent mode (add a passed Boolean in the CostSelector constructor to determine this) to check for missing/conflicting selections.
b. If missing/conflicting selections are found run synch code before continuing with cost selector load.
c. If selections are still missing after synch then continue displaying the cost selector UI, otherwise exit without displaying the UI.
3. When opening the library manager or cost selector, before we load any library only data:
a. Insert datasets that exist in one database but not the other (as determined by their GUID) into the one where they don’t exist. Don’t update name differences.
b. Refresh all relevant collections (including drop down lists) by adding any new datasets.
c. Synchronize Selection Groups:
i. Insert selection groups that exist in one database but not the other (as determined by their GUID) into the one where they don’t exist. Don’t update name differences.
ii. Refresh all relevant collections (including drop down lists) by adding any new groups.
iii. For selection groups that have different selections between the library and project databases:
1. Change GUID and name of the group [by appending a number (as we do for copying options in the option manager)] of project version.
2. Update/refresh selections and all other objects that reference the GUID or Name in .NET collections.
3. Copy the library version of the group to the project database.
4. Refresh the BEoptProject.EconomicPropertySelectionGroups collection and all object references to it.
5. Copy the selections that go with the library version of the group to the project:
a. Synchronize all Options, measures, physical properties, and economic properties (see 3.d. below).
b. Copy the library version of the group’s selections (except those for library only options/measures) to the project database.
c. Refresh the BEoptProject.SelectedEcoProps collection and the SelectedOptionEconomicProperties and SelectedMeasureEconomicProperties collections of the group, along with all object references to them.
d. Synchronize options:
i. If an option exists in one database but not the other ignore it. It is a library/project only option.
ii. If an option has the same name and category but different GUIDs between the databases:
1. If it has the same option type and physical property values update the project database and all .NET objects to the library GUID.
2. Otherwise update the name of the project version of the option in both the project database and all .NET objects by appending a number (as we do for copying options in the option manager) to the end of the name.
iii. If an option has the same GUID but different IsNewProjectDefault values update the project value to match the library value (since this value really only applies to the library anyway).
iv. If an option has the same GUID but different DisplayOrder values ignore it. The project value determines the position in the screens. The library value is only used for creating new projects and displaying library only options and it won’t hurt anything if a library only option ends up with the same order as a project option.
v. If an option has the same GUID but different name, option type, or physical property values (we don’t need to check measures differences because they will correspond to physical property differences) between the library and project databases then change the GUID and Name of the project version of the option only on the project side (we never resolve conflicts by updating the library for isolated objects):
1. Load the list of conflicting option GUIDs into a temporary collection.
2. Assign a new GUID and Name to each (without removing the old GUID)
3. Use logic from the Option.Save() method to update the GUID wherever it is referenced in .NET
4. Perform project database updates to each option that had a GUID change. (Cascading updates in the database should ensure it is updated in all tables where it is referenced.)
5. Manually update the option’s parent category’s defaults if they used the option by issuing SQL statements to the project database – category defaults don’t use cascading updates.
6. Set the IsDirty property for all updated options and all their child objects to FALSE.
vi. If an option has the same GUID, property, and physical property values but different economic property related values:
1. For economic properties that have the same business key property values and cost/lifetime values but different GUIDs between the two databases update the project database and all .NET objects to the library GUID.
2. For economic properties that have different GUIDs and business key property values between the two databases import the properties to the database that is missing them.
3. For economic properties that have the same GUIDs but different business key property values between the two databases (possibly update the GUID on save rather than synching here, depending on which is easier), change the GUID of the project version of the property to a new GUID:
a. Load the list of conflicting GUIDs into a temporary collection
b. Assign a new GUID to each (without removing the old GUID)
c. Update the GUID wherever it is referenced in .NET
d. Perform database updates to each economic property that had a GUID change. (Cascading updates in the database should ensure it is updated in all tables where it is referenced.)
e. Set the IsDirty property for all updated economic properties and all their child and parent objects to FALSE.
4. For economic properties that have the same business key property values but different cost/lifetime values between the two databases (regardless of whether the GUIDs are the same or different):
a. Create a new dataset for each dataset that has conflicting economic properties
b. Add the new dataset(s) to the project and library databases as well as the BEoptProject.EconomicDatasets collection.
c. Update all economic properties that had this issue to use the appropriate new dataset and also assign them a new GUID in the project database
d. Propagate the new economic property GUIDs to the objects themselves and update all references and ID properties accordingly.
e. Import the library version of the economic property to the project database and add it to all relevant .NET collections.

